A 3D Convolutional Neural Network to Model Retinal Ganglion Cell’s Responses to Light Patterns in Mice

Author:

Lozano Antonio1,Soto-Sánchez Cristina23,Garrigós Javier1,Martínez J. Javier1,Ferrández J. Manuel1,Fernández Eduardo2

Affiliation:

1. Dpto. Electrónica, Tecnología de Computadoras y Proyectos, Universidad Politécnica de Cartagena, Cartagena, Spain

2. Instituto de Bioingeniería, Universidad Miguel Hernández, Alicante, Spain

3. CIBER-BBN, Madrid, Spain

Abstract

Deep Learning offers flexible powerful tools that have advanced our understanding of the neural coding of neurosensory systems. In this work, a 3D Convolutional Neural Network (3D CNN) is used to mimic the behavior of a population of mice retinal ganglion cells in response to different light patterns. For this purpose, we projected homogeneous RGB flashes and checkerboards stimuli with variable luminances and wavelength spectrum to mimic a more naturalistic stimuli environment onto the mouse retina. We also used white moving bars in order to localize the spatial position of the recorded cells. Then recorded spikes were smoothed with a Gaussian kernel and used as the output target when training a 3D CNN in a supervised way. To find a suitable model, two hyperparameter search stages were performed. In the first stage, a trial and error process allowed us to obtain a system that is able to fit the neurons firing rates. In the second stage, a systematic procedure was used to compare several gradient-based optimizers, loss functions and the model’s convolutional layers number. We found that a three layered 3D CNN was able to predict the ganglion cells firing rates with high correlations and low prediction error, as measured with Mean Squared Error and Dynamic Time Warping in test sets. These models were either competitive or outperformed other models used already in neuroscience, as Feed Forward Neural Networks and Linear-Nonlinear models. This methodology allowed us to capture the temporal dynamic response patterns in a robust way, even for neurons with high trial-to-trial variable spontaneous firing rates, when providing the peristimulus time histogram as an output to our model.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3