Biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses

Author:

van der Grinten Maureen,de Ruyter van Steveninck Jaap,Lozano Antonio,Pijnacker Laura,Rückauer Bodo,Roelfsema Pieter,van Gerven Marcel,van Wezel Richard,Güçlü Umut,Güçlütürk Yağmur

Abstract

Blindness affects millions of people around the world, and is expected to become increasingly prevalent in the years to come. For some blind individuals, a promising solution to restore a form of vision are cortical visual prostheses, which convert camera input to electrical stimulation of the cortex to bypass part of the impaired visual system. Due to the constrained number of electrodes that can be implanted, the artificially induced visual percept (a pattern of localized light flashes, or ‘phosphenes’) is of limited resolution, and a great portion of the field’s research attention is devoted to optimizing the efficacy, efficiency, and practical usefulness of the encoding of visual information. A commonly exploited method is the non-invasive functional evaluation in sighted subjects or with computational models by making use of simulated prosthetic vision (SPV) pipelines. Although the SPV literature has provided us with some fundamental insights, an important drawback that researchers and clinicians may encounter is the lack of realism in the simulation of cortical prosthetic vision, which limits the validity for real-life applications. Moreover, none of the existing simulators address the specific practical requirements for the electrical stimulation parameters. In this study, we developed a PyTorch-based, fast and fully differentiable phosphene simulator. Our simulator transforms specific electrode stimulation patterns into biologically plausible representations of the artificial visual percepts that the prosthesis wearer is expected to see. The simulator integrates a wide range of both classical and recent clinical results with neurophysiological evidence in humans and non-human primates. The implemented pipeline includes a model of the retinotopic organisation and cortical magnification of the visual cortex. Moreover, the quantitative effect of stimulation strength, duration, and frequency on phosphene size and brightness as well as the temporal characteristics of phosphenes are incorporated in the simulator. Our results demonstrate the suitability of the simulator for both computational applications such as end-to-end deep learning-based prosthetic vision optimization as well as behavioural experiments. The modular approach of our work makes it ideal for further integrating new insights in artificial vision as well as for hypothesis testing. In summary, we present an open-source, fully differentiable, biologically plausible phosphene simulator as a tool for computational, clinical and behavioural neuroscientists working on visual neuroprosthetics.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3