Entropy-Weighted Numerical Gradient Optimization Spiking Neural System for Biped Robot Control

Author:

Liu Xingyang1ORCID,Rong Haina1ORCID,Neri Ferrante2ORCID,Yu Zhangguo3ORCID,Zhang Gexiang4ORCID

Affiliation:

1. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China

2. Nature Inspired Computing and Engineering Research Group, School of Computer Science and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK

3. School of Electrical and Mechanical, Beijing Institute of Technology, 100081 Beijing, P. R. China

4. School of Automation, Chengdu University of Information Technology, Chengdu 610225, P. R. China

Abstract

The optimization of robot controller parameters is a crucial task for enhancing robot performance, yet it often presents challenges due to the complexity of multi-objective, multi-dimensional multi-parameter optimization. This paper introduces a novel approach aimed at efficiently optimizing robot controller parameters to enhance its motion performance. While spiking neural P systems have shown great potential in addressing optimization problems, there has been limited research and validation concerning their application in continuous numerical, multi-objective, and multi-dimensional multi-parameter contexts. To address this research gap, our paper proposes the Entropy-Weighted Numerical Gradient Optimization Spiking Neural P System, which combines the strengths of entropy weighting and spiking neural P systems. First, the introduction of entropy weighting eliminates the subjectivity of weight selection, enhancing the objectivity and reproducibility of the optimization process. Second, our approach employs parallel gradient descent to achieve efficient multi-dimensional multi-parameter optimization searches. In conclusion, validation results on a biped robot simulation model show that our method markedly enhances walking performance compared to traditional approaches and other optimization algorithms. We achieved a velocity mean absolute error at least 35% lower than other methods, with a displacement error two orders of magnitude smaller. This research provides an effective new avenue for performance optimization in the field of robotics.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Research Fund of Chengdu University of Information Technology

Beijing Advanced Innovation Center for Intelligent Robots and Systems

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A solution to the only one object problem with dissolution rules;Journal of Membrane Computing;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3