A solution to the only one object problem with dissolution rules

Author:

Caselmann Julien,Orellana-Martín David

Abstract

AbstractIn the framework of membrane computing, (non-)uniform families of recognizer membrane systems are usually defined to solve abstract decision problems. In this sense, the use of finite resources for each member of the family makes the difference with respect to Turing machines solving these problems. While keeping the finite nature of these systems, it is interesting to know which type of problems can be solved by means of a single membrane system. For this purpose, the complexity class $$\textbf{PMC}^{1p}_{\mathcal {R}}$$ PMC R 1 p was defined as the class of problems that can be solved by means of a single membrane system in polynomial time. Due to the polynomial-time encoding of the input, at least all the problems from P can be solved with a trivial system. To go below P, the class $$\textbf{PMC}^{1f}_{\mathcal {R}}$$ PMC R 1 f restricts the definition of this encoding. In this work, we study the capability of different types of membrane systems to solve the problem, while having the encoding restriction.

Funder

Universidad de Sevilla

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3