ELASTO-VISCOPLASTIC WAVE THERMOMETRY FOR SINGLE CRYSTALLINE SILICON PROCESSING

Author:

QI XUELE1,LIU LI1,SUH C. STEVE1,CHONA RAVI2

Affiliation:

1. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123, USA

2. Air Vehicles Directorate — AFRL/VASM, 2790 D Street, Bldg 65, Room 201W, Wright-Patterson Air Force Base, OH 45433–7402, USA

Abstract

Laser-induced stress wave thermometry (LISWT) is a non-contact thermal diagnostic technique for the rapid thermal processing (RTP) of silicon wafers using laser-generated, ultrasonic, dispersive stress waves. The required knowledge base for establishing LISWT as a viable alternative to current pyrometric technology for temperature measurement up to 1000°C with ±1°C resolution is presented. A 3D elasto-viscoplastic wave model is developed for describing wave behaviors from being elastic to viscoplastic subject to the RTP annealing temperature ranging from room temperature to exceeding 1000°C. The model is a system of nine coupled first-order hyperbolic equations formulated based on the kinematics of elasto-plastic deformation, conversion of linear momentum and a temperature-dependent viscoplastic constitutive law for single crystalline silicon derived from the material models developed by Hassen–Sumino and Tsai. The group velocity of the wave propagating in silicon wafer is a nonlinear function of temperature. As nonlinearity becomes prominent at high temperature for high frequency components, low frequency components are preferably exploited to achieve the desired thermal resolution at high temperature.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3