Affiliation:
1. Nonlinear Engineering and Control Lab, Mechanical Engineering Department, Texas A&M University, College Station, Texas 77843, USA
Abstract
In the second part of the study on guided wave motions in a hollow cylinder with epoxy layers, shear and longitudinal modes propagating in the circumferential direction are investigated. The corresponding dispersion and attenuation characteristic equations are derived by incorporating a complex, frequency-dependent constitutive law for the viscoelastic coating material. Continuous displacement boundary conditions are implemented to model perfect interfacial bonds between the tubular section and applied epoxy coatings. The presence of thin dissipative viscoelastic layers has profound impact on the propagation of both the circumferential shear and longitudinal waves. The number of admissible propagating modes increases with increasing number of viscoelastic layers and higher order modes dissipate significantly less at high frequencies than the lower order modes at low frequencies. Over the frequency range considered, all the circumferential propagating modes are significantly more attenuating than their axial propagating counterparts studied in Part 1 of the paper. Generation of the lowest shear wave mode is suppressed at approximately 0.2 MHz in the coated tubular. However, no such definitive cutoff frequencies are observed for the longitudinal modes regardless of how many viscoelastic layers are considered.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献