Dispersion of Guided Waves in Complex Waveguides: A Hybrid Modeling Technique Combining Gauss–Lobatto–Legendre Node Collation and Semi-Analytical Finite Element Method

Author:

Liu Menglong1ORCID,Li Lun1,Zhang Yaohui1,Chen Gongfa2,Cui Fangsen3

Affiliation:

1. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, P. R. China

2. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China

3. Institute of High Performance Computing, Agency for Science, Technology, and Research, Singapore 138632, Singapore

Abstract

Guided waves (GW) are massively used for structural health monitoring and defect evaluation in plate, pipe, and rail structures. To accurately and efficiently calculate the dispersive natures of GW in complex waveguides, this study proposes a novel Gauss–Lobatto–Legendre-based high-order semi-analytical finite element method (GLL-SAFE). Combining the GLL node collation and Lobatto quadrature into SAFE, the mass matrix in the developed GLL-SAFE is diagonal, which enables a faster solution speed and a reduced error of matrix inversion. Firstly, the GWs in the single-layer isotropic material, composite lamina, and composite laminates are calculated with both GLL-SAFE and the conventional Gauss-SAFE featuring an equidistant node collation and Gaussian quadrature. Before reaching the convergence limit, the calculated average relative errors for GLL-SAFE are smaller than those for Gauss-SAFE, and can reach an order of 10[Formula: see text] and 10[Formula: see text] for the phase and group velocity, respectively. Then a novel mesh automatic reconstruction with arbitrary element polynomial order is developed to calculate GW propagation in waveguides of complex cross section. As a hollow cylinder for validation, the calculated average relative errors reach below [Formula: see text] and [Formula: see text] for the phase and group velocity, respectively. Finally, with a complex rail track as the waveguide, the calculated dispersion characteristics with GLL-SAFE show an excellent match with those from the time-domain finite element analysis, and GLL-SAFE shows its higher calculation efficiency over Gauss–SAFE.

Funder

National Natural Science Foundation of China

Shenzhen Stable Support Grant

Guangdong Basic and Applied Basic Research Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3