Deep Learning Accelerated Design of Bézier Curve-Based Cellular Metamaterials with Target Properties

Author:

Liu Chuang1ORCID,Wu Heng-An2ORCID

Affiliation:

1. College of Civil Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China

2. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, P. R. China

Abstract

Machine learning has sparked significant interest in the realm of designing mechanical metamaterials. These metamaterials derive their unique properties from microstructures rather than the constituent materials themselves. In this context, we introduce a novel data-driven approach for the design of an orthotropic cellular metamaterials with specific target properties. Our methodology leverages a Bézier curve framework with strategically placed control points. A machine learning model harnesses the positions of these control points to achieve the desired material properties. This process consists of two main steps. Initially, we establish a forward model capable of predicting material properties based on given designs. Then, we construct an inverse model that takes material properties as inputs and produces corresponding design parameters as outputs. Our results demonstrate that the dataset generated using the Bézier curve-based strategy shows a wide range of elastic distributions. Describing the geometry in terms of design parameters, rather than pixel-based figures, enhances the training efficiency of the networks. The dual-network training approach helps avoid contradictions where specific elastic properties may correspond to various geometric designs. We verify the prediction accuracy of the inverse model concerning elastic properties and relative density. The presented approach holds promise for accelerating the design of cellular metamaterials with desired properties.

Funder

National Key Research and Development Program of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3