Inverse design of nonlinear mechanical metamaterials via video denoising diffusion models

Author:

Bastek Jan-HendrikORCID,Kochmann Dennis M.ORCID

Abstract

AbstractThe accelerated inverse design of complex material properties—such as identifying a material with a given stress–strain response over a nonlinear deformation path—holds great potential for addressing challenges from soft robotics to biomedical implants and impact mitigation. Although machine learning models have provided such inverse mappings, they are typically restricted to linear target properties such as stiffness. Here, to tailor the nonlinear response, we show that video diffusion generative models trained on full-field data of periodic stochastic cellular structures can successfully predict and tune their nonlinear deformation and stress response under compression in the large-strain regime, including buckling and contact. Key to success is to break from the common strategy of directly learning a map from property to design and to extend the framework to intrinsically estimate the expected deformation path and the full-field internal stress distribution, which closely agree with finite element simulations. This work thus has the potential to simplify and accelerate the identification of materials with complex target performance.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3