CONTINUUM SHELL MODEL FOR BUCKLING OF ARMCHAIR CARBON NANOTUBES UNDER COMPRESSION OR TORSION

Author:

ROY CHOWDHURY A. N.1,WANG C. M.12,KOH S. J. A.23

Affiliation:

1. Department of Civil and Environmental Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore

2. Engineering Science Programme, National University of Singapore, Kent Ridge, Singapore 117576, Singapore

3. Department of Mechanical Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore

Abstract

Molecular dynamics (MD) simulations are performed using adaptive intermolecular reactive bond order potential to analyze single-walled and double-walled carbon nanotubes. These carbon nanotubes were analyzed for buckling under compression and under torsion. The MD simulations create a comprehensive database for the critical buckling loads/strains and critical buckling torques/twist angles for armchair SWCNTs and DWCNTs of varying diameters and lengths. Using MD results as a computational benchmark, an equivalent thick shell model of CNT is proposed, which is amenable for analysis using a commercially available software ABAQUS. Based on our MD results, an empirical equation that describes the size-dependent Young's modulus for a single-walled carbon nanotube is established. Buckling analysis of CNT under compression and under torsion are performed with the equivalent shell model using size-dependent Young's modulus, Poisson's ratio = 0.19 and shell thickness h = 0.066 nm. We show that the equivalent shell model gives good estimate of critical buckling load/strain and critical buckling torque with respect to the MD results. Variation of critical twist angle with length of CNT, predicted by the shell model is in good qualitative agreement with MD simulation. However, the equivalent shell model underestimates the critical twist angle by 30% because the continuum shell model overestimates torsional stiffness of CNT compared to an atomistic model of CNT. The equivalent shell model is less computational intensive to implement as compared with MD. Its accuracy for predicting the buckling states for long carbon nanotubes allows it to be used for moderately long CNTs under compression/torsion, in-lieu of MD simulations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3