Mechanical characterization of reinforced vertically-aligned carbon nanotube array synthesized by shock-induced partial phase transition: insight from molecular dynamics simulations

Author:

Edalatmanesh Alireza,Mahnama MaryamORCID,Feghhi Fatemeh,Mashhadi Mahmoud Mosavi

Abstract

Abstract Despite intriguing mechanical properties of carbon nanotubes (CNTs), vertically-aligned carbon nanotube (VACNT) array does not possess a high strength against compression along the CNT axis and also the loadings perpendicular to the CNT axis. Here in this study, shock compression is introduced as a means for partial phase transition (PPT) in the VACNT array to reinforce the structure against the mentioned loadings. Molecular dynamics simulations are exploited to investigate the synthesis of a novel nanostructure from a VACNT array with 10 nm long (5, 5) CNTs. Employing Hugoniostat method, shockwave pressures of 6.6 GPa and 55 GPa are extracted from Hugoniot curves as the instability limit and the PPT point, respectively. Coordination analysis reveals the nucleation of carbon atoms in sp3 hybridization while preserving the dominant nature of CNT due to the high percent of sp2 hybridization. Recovery of the shocked samples yields the final structure to be tested for mechanical characteristics. Tensile and compression tests on the samples reveal that for the shockwave pressures below the PPT point, an increase of the shock strength leads to higher compliance in the VACNT array. However, beyond the PPT point the novel nanostructure shows an extraordinary strong behavior against loading along all directions.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3