Limit Elastic Analysis of Functionally Graded Rotating Disks Under Thermo-Mechanical Loading

Author:

Madan Royal1ORCID,Bhowmick Shubhankar1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Raipur, Raipur 492010, Chhattisgarh, India

Abstract

In this work, the thermo-mechanical limit elastic speed analysis of functionally graded rotating disk has been reported. Three different material models, i.e., power law (P-FGM), sigmoid law (S-FGM), and exponential law (E-FGM), along with varying disk profiles, namely uniform, tapered, and exponential disk profiles, are considered. The methodology adopted is variational principle wherein the solution has been obtained by Galerkin’s error minimization principle. Halpin–Tsai method was used to estimate the modulus, modified rule of mixture for yield strength, and the rule of mixture for density and coefficient of thermal expansion. This study aims to analyze the effects of material models, grading indices, aspect ratio, and disk geometry on disk performance when subjected to combined thermal and mechanical loadings. Finite element analysis has been performed to validate this study and good agreement between both the methods is seen. The study shows a substantial difference in the limit speed for different disk profiles changing from uniform thickness to exponentially varying thickness. The von Mises stress distribution and location of yielding at limit speed are shown for different indices, material models, and disk profiles. In P-FGM, limit speed decreases with the increase in grading indices whereas in E-FGM, limit speed decreases with the decrease in grading indices. For increase in aspect ratio, limit elastic speed decreases in all the cases.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3