An Efficient Finite Element Algorithm in Elastography

Author:

Li Eric1,Liao W. H.1

Affiliation:

1. Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, P. R. China

Abstract

Elastography is an imaging approach to measure the stiffness of tissues to provide diagnostic information. Currently, finite element method (FEM) has been widely used in elastography. However, FEM tends to an overly stiff model that sometimes gives unsatisfactory accuracy, particularly using triangular elements in 2D or tetrahedral elements in 3D. In general, it is difficult or even impossible to generate quadrilateral or brick elements to precisely capture the anatomic details for mechanobiologic modeling as the biologic system can be rather sophisticated. In addition, biologic soft tissues are often considered as “incompressible” materials, where conventional FEM could suffer from volumetric locking in numerical solution. On the other hand, linear triangular and tetrahedral mesh can be automatically generated for complicated geometry, which significantly saves the time for the creation of model. With these reasons, for the first time, smoothed finite element method (SFEM) is developed to analyze elastography problems. A range of numerical examples, including static, dynamic, viscoelastic and time harmonic cases have exemplified herein to validate that SFEM is able to provide more accurate and stable solutions using the same set of mesh compared with the standard FEM. Furthermore, SFEM is also effective to inversely compute the mechanical properties of abnormal tissue.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3