Dielectric Elastomer as a New Material for Electrostatically Actuated Microbeams: Stability Analysis

Author:

Fathalilou Mohammad1,Rezaei-Abajelou Pegah1,Vefaghi Afsoon1,Rezazadeh Ghader12

Affiliation:

1. Mechanical Engineering Department, Urmia University, Urmia, Iran

2. Institute of Engineering and Technology, South Ural State University, Chelyabinsk, Russian Federation

Abstract

Due to the interesting properties such as light weight and high deformation ability, dielectric elastomer (DE) resonators can be good alternatives for conventional silicon resonant beams used in micro-electro-mechanical systems (MEMS). This paper proposes a modeling in which a pre-stretched clamped-clamped DE-based microbeam oscillating above the ground substrate is subjected to an external electrostatic pressure. Using a DE-based beam affects the total rigidity of the system, which may lead to an anticipated saddle-node or pitchfork bifurcation. Hence, the present study tries to analyze the effects of DE properties on changing the stability regime of DE-based microbeams under electrostatic actuation. The stability of the system has been investigated using an eigen-value form of the problem. The effects of DE properties including pre-stress, relative permittivity and voltage value across the electrodes on pull-in or divergence instability as well as the frequency response of the system have been investigated. Moreover, the critical values of the DE voltage as a booster of instability occurrence have been obtained in either the presence or absence of the direct current (DC) voltage. It has been found that the pre-stress and appropriate DE permittivity can provide a needed magnitude of the DE actuating voltage to alter the resonance frequency and stability positions of the structure.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3