A Deformation–Diffusion-Coupled Constitutive Theory for Hydrogels by Considering the Preparation Conditions

Author:

Xu Shuai1,Liu Zishun1

Affiliation:

1. International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, P. R. China

Abstract

Hydrogels are excellent soft materials that can absorb large amounts of water and have applications ranging from biocompatible sensors to soft robots. Experiments have demonstrated that the equilibrium swelling state of hydrogels strongly depends on their preparation and external conditions, such as the as-prepared water content, cross-linking density, and temperature. However, traditional theories based on Flory’s work have failed to capture these dependence effects. In particular, these theories ignore the existence of solvents in the as-prepared state of hydrogels, making them unable to characterize the sensitivity of the swelling and mechanical behaviors to the as-prepared water content. In this study, we propose a constitutive theory that considers the preparation conditions based on statistical thermodynamics. Our theory can precisely predict the swelling ability of hydrogels under diverse preparation conditions and capture the phase transitions of temperature-sensitive hydrogels. We further derived the governing equations for large deformations and solvent diffusion considering their strong coupling effects. Based on our theory, the inhomogeneous deformation-induced solvent migration and delayed fracture of hydrogels were investigated. From theoretical investigations, we revealed the underlying mechanism of these interesting hydrogel behaviors. The theoretical results were further used to guide the design of diverse intelligent structures that can be applied as soft actuators, flexible robots, and morphing the growth of plants.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3