Distributed Approximation Algorithms for Steiner Tree in the CONGESTED CLIQUE

Author:

Saikia Parikshit1ORCID,Karmakar Sushanta1

Affiliation:

1. Department of Computer Science and Engineering, Indian Institute of Technology, Guwahati, India, 781039, India

Abstract

The Steiner tree problem is one of the fundamental and classical problems in combinatorial optimization. In this paper we study this problem in the CONGESTED CLIQUE model (CCM) [29] of distributed computing. For the Steiner tree problem in the CCM, we consider that each vertex of the input graph is uniquely mapped to a processor and edges are naturally mapped to the links between the corresponding processors. Regarding output, each processor should know whether the vertex assigned to it is in the solution or not and which of its incident edges are in the solution. We present two deterministic distributed approximation algorithms for the Steiner tree problem in the CCM. The first algorithm computes a Steiner tree using [Formula: see text] rounds and [Formula: see text] messages for a given connected undirected weighted graph of [Formula: see text] nodes. Note here that [Formula: see text] notation hides polylogarithmic factors in [Formula: see text]. The second one computes a Steiner tree using [Formula: see text] rounds and [Formula: see text] messages, where [Formula: see text] and [Formula: see text] are the shortest path diameter and number of edges respectively in the given input graph. Both the algorithms achieve an approximation ratio of [Formula: see text], where [Formula: see text] is the number of leaf nodes in the optimal Steiner tree. For graphs with [Formula: see text], the first algorithm exhibits better performance than the second one in terms of the round complexity. On the other hand, for graphs with [Formula: see text], the second algorithm outperforms the first one in terms of the round complexity. In fact when [Formula: see text] then the second algorithm achieves a round complexity of [Formula: see text] and message complexity of [Formula: see text]. To the best of our knowledge, this is the first work to study the Steiner tree problem in the CCM.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed approximate minimal Steiner trees with millions of seed vertices on billion-edge graphs;Journal of Parallel and Distributed Computing;2023-11

2. Mind the O˜: Asymptotically Better, but Still Impractical, Quantum Distributed Algorithms;Algorithms;2023-07-11

3. Towards Distributed 2-Approximation Steiner Minimal Trees in Billion-edge Graphs;2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2022-05

4. The Clustered Selected-Internal Steiner Tree Problem;International Journal of Foundations of Computer Science;2021-11-30

5. Efficient Block Propagation in Wireless Blockchain Networks and Its Application in Bitcoin;IEEE Transactions on Network Science and Engineering;2021-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3