Affiliation:
1. Department of Computer Science, University of Taipei, No.1, Ai-Guo West Road, Taipei 100234, Taiwan
Abstract
Given a complete graph [Formula: see text], with nonnegative edge costs, two subsets [Formula: see text] and [Formula: see text], a partition [Formula: see text] of [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] of [Formula: see text], [Formula: see text], a clustered Steiner tree is a tree [Formula: see text] of [Formula: see text] that spans all vertices in [Formula: see text] such that [Formula: see text] can be cut into [Formula: see text] subtrees [Formula: see text] by removing [Formula: see text] edges and each subtree [Formula: see text] spans all vertices in [Formula: see text], [Formula: see text]. The cost of a clustered Steiner tree is defined to be the sum of the costs of all its edges. A clustered selected-internal Steiner tree of [Formula: see text] is a clustered Steiner tree for [Formula: see text] if all vertices in [Formula: see text] are internal vertices of [Formula: see text]. The clustered selected-internal Steiner tree problem is concerned with the determination of a clustered selected-internal Steiner tree [Formula: see text] for [Formula: see text] and [Formula: see text] in [Formula: see text] with minimum cost. In this paper, we present the first known approximation algorithm with performance ratio [Formula: see text] for the clustered selected-internal Steiner tree problem, where [Formula: see text] is the best-known performance ratio for the Steiner tree problem.
Funder
Ministry of Science and Technology, Taiwan
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献