Optimal Feature Selection with Weight Optimised Deep Neural Network for Incremental Learning-Based Intrusion Detection in Fog Environment

Author:

Abdussami Aftab Alam1,Farooqui Mohammed Faizan1

Affiliation:

1. Department of Computer Application, Integral University Lucknow, India

Abstract

Fog computing acts as an intermediate component to reduce the delays in communication among end-users and the cloud that offer local processing of requests among end-users through fog devices. Thus, the primary aim of fog devices is to ensure the authenticity of incoming network traffic. Anyhow, these fog devices are susceptible to malicious attacks. An efficient Intrusion Detection System (IDS) or Intrusion Prevention System (IPS) is necessary to offer secure functioning of fog for improving efficiency. IDSs are a fundamental component for any security system like the Internet of things (IoT) and fog networks for ensuring the Quality of Service (QoS). Even though different machine learning and deep learning models have shown their efficiency in intrusion detection, the deep insight of managing the incremental data is a complex part. Therefore, the main intent of this paper is to implement an effective model for intrusion detection in a fog computing platform. Initially, the data dealing with intrusion are collected from diverse benchmark sources. Further, data cleaning is performed, which is to identify and remove errors and duplicate data, to create a reliable dataset. This improves the quality of the training data for analytics and enables accurate decision making. The conceptual and temporal features are extracted. Concerning reducing the data length for reducing the training complexity, optimal feature selection is performed based on an improved meta-heuristic concept termed Modified Active Electrolocation-based Electric Fish Optimization (MAE-EFO). With the optimally selected features or data, incremental learning-based detection is accomplished by Incremental Deep Neural Network (I-DNN). This deep learning model optimises the testing weight using the proposed MAE-EFO by concerning the objective as to minimise the error difference between the predicted and actual results, thus enhancing the performance of new incremental data. The validation of the proposed model on the benchmark datasets and other datasets achieves an attractive performance when compared over other state-of-the-art IDSs.

Funder

Integral University manuscript

Publisher

World Scientific Pub Co Pte Ltd

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3