Reflections on and Exploration of Academic Early Warning Management and Support for Students in Colleges and Universities

Author:

Feng Junli1,Lian Xiaojie1

Affiliation:

1. International College , Krirk University , Bangkok , , Thailand .

Abstract

Abstract In this paper, the feature increment can be regarded as a learning mapping function, and a non-equilibrium incremental learning (WILS) method for the academic warning is proposed, and the academic warning model of the non-equilibrium incremental learning method is constructed. The learning factor is regulated by introducing the Focal loss function, and the learned knowledge is integrated into the Focal loss as the final loss function. Finally, the three-dimensional indicators of social characteristics, personal characteristics, and student behavior were used to explore the influencing factors of academic performance and academic support strategies were explored in this way. The results show that the average value of the accuracy of the academic early warning model is 0.857, and the F1-Measure is 0.891, which indicates that the model can reasonably and efficiently provide prior warning of students’ learning situations and behavioral performance. This paper proposes countermeasure suggestions for managing academic early warning and academic support work, which enhances the purpose of talent cultivation quality.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Research on Risk Management and Early Warning Based on Information System Data Mining;2024 International Conference on Informatics Education and Computer Technology Applications (IECA);2024-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3