Data Imbalance in Autism Pre-Diagnosis Classification Systems: An Experimental Study

Author:

Abdelhamid Neda1,Padmavathy Arun2,Peebles David3,Thabtah Fadi2,Goulder-Horobin Daymond2

Affiliation:

1. IT Programme, Auckland Institute of Studies, Auckland, New Zealand

2. Digital Technologies, Manukau Institute of Technology, Auckland, New Zealand

3. Department of Psychology, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK

Abstract

Machine learning (ML) is a branch of computer science that is rapidly gaining popularity within the healthcare arena due to its ability to explore large datasets to discover useful patterns that can be interepreted for decision-making and prediction. ML techniques are used for the analysis of clinical parameters and their combinations for prognosis, therapy planning and support and patient management and wellbeing. In this research, we investigate a crucial problem associated with medical applications such as autism spectrum disorder (ASD) data imbalances in which cases are far more than just controls in the dataset. In autism diagnosis data, the number of possible instances is linked with one class, i.e. the no ASD is larger than the ASD, and this may cause performance issues such as models favouring the majority class and undermining the minority class. This research experimentally measures the impact of class imbalance issue on the performance of different classifiers on real autism datasets when various data imbalance approaches are utilised in the pre-processing phase. We employ oversampling techniques, such as Synthetic Minority Oversampling (SMOTE), and undersampling with different classifiers including Naive Bayes, RIPPER, C4.5 and Random Forest to measure the impact of these on the performance of the models derived in terms of area under curve and other metrics. Results pinpoint that oversampling techniques are superior to undersampling techniques, at least for the toddlers’ autism dataset that we consider, and suggest that further work should look at incorporating sampling techniques with feature selection to generate models that do not overfit the dataset.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3