HIRZEBRUCH CLASSES AND MOTIVIC CHERN CLASSES FOR SINGULAR SPACES

Author:

BRASSELET JEAN-PAUL1,SCHÜRMANN JÖRG2,YOKURA SHOJI3

Affiliation:

1. Institut de Mathématiques de Luminy, CNRS, Campus de Luminy – Case 907, 13288 Marseille Cedex 9, France

2. Westfälische Wilhelms-Universität, Mathematische Institut, Einsteinstrasse 62, 48149 Münster, Germany

3. Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University, 21-35 Korimoto 1-Chome, Kagoshima 890-0065, Japan

Abstract

In this paper we study some new theories of characteristic homology classes of singular complex algebraic (or compactifiable analytic) spaces. We introduce a motivic Chern class transformationmCy: K0( var /X) → G0(X) ⊗ ℤ[y], which generalizes the total λ-class λy(T*X) of the cotangent bundle to singular spaces. Here K0( var /X) is the relative Grothendieck group of complex algebraic varieties over X as introduced and studied by Looijenga and Bittner in relation to motivic integration, and G0(X) is the Grothendieck group of coherent sheaves of [Formula: see text]-modules. A first construction of mCy is based on resolution of singularities and a suitable "blow-up" relation, following the work of Du Bois, Guillén, Navarro Aznar, Looijenga and Bittner. A second more functorial construction of mCy is based on some results from the theory of algebraic mixed Hodge modules due to M. Saito. We define a natural transformation Ty* : K0( var /X) → H*(X) ⊗ ℚ[y] commuting with proper pushdown, which generalizes the corresponding Hirzebruch characteristic. Ty* is a homology class version of the motivic measure corresponding to a suitable specialization of the well-known Hodge polynomial. This transformation unifies the Chern class transformation of MacPherson and Schwartz (for y = -1), the Todd class transformation in the singular Riemann-Roch theorem of Baum–Fulton–MacPherson (for y = 0) and the L-class transformation of Cappell-Shaneson (for y = 1). We also explain the relation among the "stringy version" of our characteristic classes, the elliptic class of Borisov–Libgober and the stringy Chern classes of Aluffi and De Fernex–Lupercio–Nevins–Uribe. All our results can be extended to varieties over a base field k of characteristic 0.

Publisher

World Scientific Pub Co Pte Lt

Subject

Geometry and Topology,Analysis

Reference74 articles.

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Brasselet–Schürmann–Yokura Conjecture on L-Classes of Projective Rational Homology Manifolds;International Mathematics Research Notices;2024-09-09

2. Bundle transfer of L–homology orientation classes for singular spaces;Algebraic & Geometric Topology;2024-08-19

3. Hecke algebra action on twisted motivic Chern classes and K-theoretic stable envelopes;Mathematische Annalen;2024-08-18

4. COMPACTNESS OF INTEGRAL OPERATORS AND UNIFORM;Revue Roumaine Mathematiques Pures Appliquees;2024-06-30

5. The CotangentSchubert Macaulay2 package;Journal of Software for Algebra and Geometry;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3