Hecke algebra action on twisted motivic Chern classes and K-theoretic stable envelopes

Author:

Koncki JakubORCID,Weber Andrzej

Abstract

AbstractLet G be a linear semisimple algebraic group and B its Borel subgroup. Let $${\mathbb {T}}\subset B$$ T B be the maximal torus. We study the inductive construction of Bott–Samelson varieties to obtain recursive formulas for the twisted motivic Chern classes of Schubert cells in G/B. To this end we introduce two families of operators acting on the equivariant K-theory $${\text {K}}_{\mathbb {T}}(G/B)[y]$$ K T ( G / B ) [ y ] , the right and left Demazure–Lusztig operators depending on a parameter. The twisted motivic Chern classes coincide (up to normalization) with the K-theoretic stable envelopes. Our results imply wall-crossing formulas for a change of the weight chamber and slope parameters. The right and left operators generate a twisted double Hecke algebra. We show that in the type A this algebra acts on the Laurent polynomials. This action is a natural lift of the action on $${\text {K}}_{\mathbb {T}}(G/B)[y]$$ K T ( G / B ) [ y ] with respect to the Kirwan map. We show that the left and right twisted Demazure–Lusztig operators provide a recursion for twisted motivic Chern classes of matrix Schubert varieties.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3