COARSE GRAINING IN SIMULATED CELL POPULATIONS

Author:

DRASDO DIRK12

Affiliation:

1. Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Haertelstr. 16/18, D-04107 Leipzig, Germany

2. Max-Planck-Institute for Mathematics in the Sciences, Kreutzstr. 22-26, D-4103 Leipzig, Germany

Abstract

The main mechanisms that control the organization of multicellular tissues are still largely open. A commonly used tool to study basic control mechanisms are in vitro experiments in which the growth conditions can be widely varied. However, even in vitro experiments are not free from unknown or uncontrolled influences. One reason why mathematical models become more and more a popular complementary tool to experiments is that they permit the study of hypotheses free from unknown or uncontrolled influences that occur in experiments. Many model types have been considered so far to model multicellular organization ranging from detailed individual-cell based models with explicit representations of the cell shape to cellular automata models with no representation of cell shape, and continuum models, which consider a local density averaged over many individual cells. However, how the different model description may be linked, and, how a description on a coarser level may be constructed based on the knowledge of the finer, microscopic level, is still largely unknown. Here, we consider the example of monolayer growth in vitro to illustrate how, in a multi-step process starting from a single-cell based off-lattice-model that subsumes the information on the sub-cellular scale by characteristic cell-biophysical and cell-kinetic properties, a cellular automaton may be constructed whose rules have been chosen based on the findings in the off-lattice model. Finally, we use the cellular automaton model as a starting point to construct a multivariate master equation from a compartment approach from which a continuum model can be derived by a systematic coarse-graining procedure. We find that the resulting continuum equation largely captures the growth behavior of the CA model. The development of our models is guided by experimental observations on growing monolayers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Systems Engineering

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3