First passage time analysis of spatial mutation patterns reveals sub-clonal evolutionary dynamics in colorectal cancer

Author:

Haughey Magnus J.ORCID,Bassolas Aleix,Sousa SandroORCID,Baker Ann-MarieORCID,Graham Trevor A.ORCID,Nicosia VincenzoORCID,Huang Weini

Abstract

The signature of early cancer dynamics on the spatial arrangement of tumour cells is poorly understood, and yet could encode information about how sub-clones grew within the expanding tumour. Novel methods of quantifying spatial tumour data at the cellular scale are required to link evolutionary dynamics to the resulting spatial architecture of the tumour. Here, we propose a framework using first passage times of random walks to quantify the complex spatial patterns of tumour cell population mixing. First, using a simple model of cell mixing we demonstrate how first passage time statistics can distinguish between different pattern structures. We then apply our method to simulated patterns of mutated and non-mutated tumour cell population mixing, generated using an agent-based model of expanding tumours, to explore how first passage times reflect mutant cell replicative advantage, time of emergence and strength of cell pushing. Finally, we explore applications to experimentally measured human colorectal cancer, and estimate parameters of early sub-clonal dynamics using our spatial computational model. We infer a wide range of sub-clonal dynamics, with mutant cell division rates varying between 1 and 4 times the rate of non-mutated cells across our sample set. Some mutated sub-clones emerged after as few as 100 non-mutant cell divisions, and others only after 50,000 divisions. The majority were consistent with boundary driven growth or short-range cell pushing. By analysing multiple sub-sampled regions in a small number of samples, we explore how the distribution of inferred dynamics could inform about the initial mutational event. Our results demonstrate the efficacy of first passage time analysis as a new methodology in spatial analysis of solid tumour tissue, and suggest that patterns of sub-clonal mixing can provide insights into early cancer dynamics.

Funder

Queen Mary University of London

Juan de la Cierva program

European Union - Next Generation EU; the Recovery, Transformation and Resilience Plan

Universitat de les Illes Balears

Universitat Rovira i Virgili

Instituto de Física Interdisciplinar y Sistemas Complejos

Engineering and Physical Sciences Research Council

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference57 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mutation divergence over space in tumour expansion;Journal of The Royal Society Interface;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3