EVOLUTION OF BIOMEDICAL INNOVATION QUANTIFIED VIA BILLIONS OF DISTINCT ARTICLE-LEVEL MeSH KEYWORD COMBINATIONS

Author:

PETERSEN ALEXANDER M.1ORCID

Affiliation:

1. Department of Management of Complex Systems, Ernest and Julio Gallo Management Program, School of Engineering, University of California, Merced, California 95343, USA

Abstract

To what degree has the vast space of higher-order knowledge combinations been explored and how has it evolved over time? To address these questions, we first develop a systematic approach to measuring combinatorial innovation in the biomedical sciences based upon the comprehensive ontology of Medical Subject Headings (MeSH) developed and maintained by the US National Library of Medicine. As such, this approach leverages an expert-defined knowledge ontology that features both breadth (27,875 MeSH analyzed across 25 million articles indexed by PubMed that were published from 1902 onwards) and depth (we differentiate between Major and Minor MeSH terms to identify differences in the knowledge network representation constructed from primary research topics only). With this level of uniform resolution, we differentiate between three different modes of innovation contributing to the combinatorial knowledge network: (i) conceptual innovation associated with the emergence of new concepts and entities (measured as the entry of new MeSH) and (ii) recombinant innovation, associated with the emergence of new combinations, which itself consists of two types: peripheral (i.e. combinations involving new knowledge) and core (combinations comprised of pre-existing knowledge only). Another relevant question we seek to address is whether examining triplet and quartet combinations, in addition to the more traditional dyadic or pairwise combinations, provides evidence of any new phenomena associated with higher-order combinations. Analysis of the size, growth, and coverage of combinatorial innovation yield results that are largely independent of the combination order, with some subtle caveats identified at higher order (i.e. beyond the common dyadic or pairwise representation of combinations). Our main results are two-fold: (a) despite the persistent addition of new MeSH terms, the network is densifying over time meaning that scholars are increasingly exploringand realizing the vast space of all knowledge combinations and (b) conceptual innovation is increasingly concentrated within single research articles, a harbinger of the recent paradigm shift towards convergence science.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3