Methods for measuring social and conceptual dimensions of convergence science

Author:

Petersen Alexander Michael1ORCID,Arroyave Felber2ORCID,Pavlidis Ioannis3ORCID

Affiliation:

1. Ernest and Julio Gallo Management Program, Department of Management of Complex Systems, School of Engineering, University of California , Merced, CA 95343, USA

2. Environmental Systems Program and Department of Management of Complex Systems, School of Engineering, University of California , Merced, CA 95343, USA

3. Department of Computer Science, Computational Physiology Laboratory, University of Houston , Houston, TX 77204, USA

Abstract

Abstract Convergence science is an intrepid form of interdisciplinarity defined by the US National Research Council as ‘the coming together of insights and approaches from originally distinct fields’ to strategically address grand challenges. Despite its increasing relevance to science policy and institutional design, there is still no practical framework for measuring convergence. We address this gap by developing a measure of disciplinary distance based upon disciplinary boundaries delineated by hierarchical ontologies. We apply this approach using two widely used ontologies—the Classification of Instructional Programs and the Medical Subject Headings—each comprised of thousands of entities that facilitate classifying two distinct research dimensions, respectively. The social dimension codifies the disciplinary pedigree of individual scholars, connoting core expertise associated with traditional modes of mono-disciplinary graduate education. The conceptual dimension codifies the knowledge, methods, and equipment fundamental to a given target problem, which together may exceed the researchers’ core expertise. Considered in tandem, this decomposition facilitates measuring social-conceptual alignment and optimizing team assembly around domain-spanning problems—a key aspect that eludes other approaches. We demonstrate the utility of this framework in a case study of the human brain science (HBS) ecosystem, a relevant convergence nexus that highlights several practical considerations for designing, evaluating, institutionalizing, and accelerating convergence. Econometric analysis of 655,386 publications derived from 9,121 distinct HBS scholars reveals a 11.4% article-level citation premium attributable to research featuring full topical convergence, and an additional 2.7% citation premium if the social (disciplinary) configuration of scholars is maximally aligned with the conceptual (topical) configuration of the research.

Funder

Eckhard-Pfeiffer Distinguished Professorship Fund

NSF

Publisher

Oxford University Press (OUP)

Subject

Library and Information Sciences,Education

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3