Optical properties of pure and TM-doped single-walled ZnO nanotubes (8,0) (TM = V and Co) by first principles calculations

Author:

Mendi R. Taghavi1,Sarmazdeh M. Majidiyan2,Boochani A.3,Elahi S. M.4,Naderi S.5

Affiliation:

1. Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

2. Department of Physics, Payame Noor University, Mashhad, Iran

3. Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

4. Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran

5. Young Researchers and Elit Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

Abstract

In this paper, some optical properties of pure and transition metal-doped (TM = Co and V) single-walled ZnO nanotubes (8,0) (SWZnONT(8,0)) such as, real and imaginary parts of the dielectric function, optical conductivity, refractive index and optical reflectivity, were investigated. The calculations have been performed within framework of the density functional theory (DFT) using the full potential linearized augmented plane wave (FP-LAPW) and the generalized gradient approximation (GGA). The results show that, optical properties of SWZnONT(8,0) are anisotropic, especially at low energies and this anisotropy at low energies increases with doping of V in SWZnONT(8,0) while the Co-doped SWZnONT(8,0) behaves like pure SWZnONT(8,0). Doping of ZnO nanotubes has a significant impact on the value of the dielectric constant, so that due to the presence of V atom, the dielectric constant is increased up to three times. Study of the imaginary part of the dielectric function and optical conductivity showed that the important energy range for absorption processes and optical transitions is low energy range to 15 eV. The optical transitions have been studied based on band structure and density of states. The results of the optical reflectivity showed that these nanotubes are transparent in a wide energy ranges which provide them for using in transparent coatings. In addition, due to the reported magnetic properties for V- and Co-doped ZnO nanotubes, these nanotubes are suitable for using in spintronics and magneto-optic devices.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3