Enhanced electrical performance by modulation-doping in AlGaN-based deep ultraviolet light-emitting diodes

Author:

Yang Sipan123ORCID,He Miao2,Yan Jianchang3,Wen Kunhua2,Wang Junxi3,Guo Yanan3,Xiong Deping2

Affiliation:

1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China

3. Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

Abstract

Through the silicon modulation-doping (MD) growth method, the electrical performance of AlGaN-based deep ultraviolet light-emitting diodes (DUV-LEDs) is improved by replacing the commonly uniform-doped (UD) method of n-AlGaN layer. The electroluminescence characterisic measurements demonstrate the MD growth method could effectively enhance the light emission intensity. Both the forward voltage and reverse leakage current of the MD samples are obviously reduced compared to those of the UD sample. Due to the existence of periodic Si-MD superlattices in n-AlGaN layers, which may behave like a series of capacitors, the built-in electric fields are formed. Both the measured capacitance–voltage (C–V) characteristics, and related photoluminescence (PL) intensity with the Si-MD growth method are enhanced. In detail, the effects of these capacitors can enhance the peak internal capacitance up to 370 pF in the MD sample, whereas the UD sample is only 180 pF. The results also mean that with better current spreading ability in the MD sample, the MD processes can effectively enhance the efficiency and reliability of DUV-LEDs. Thus, the investigations of the Si-MD growth methods may be useful for improving the electrical performance of DUV-LEDs in future works. Meanwhile, this investigation may partly suggest the minor crystalline quality improvements in the epi-layers succeeding the MD n-AlGaN layer.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3