Analysis of a novel double driving signal line and driving electrodes separated RF MEMS switch

Author:

Chen Zhiqiang1,Tian Wenchao1,Zhang Xiaotong1

Affiliation:

1. School of Electro-Mechanical Engineering, Xidian University, No. 2 Taibai South Road, Xi’an 710071, China

Abstract

A novel double driving signal line and driving electrodes separated radio frequency (RF) micro-electromechanical system (MEMS) switch was proposed in this paper to overcome the problems of the high actuation voltage, small displacement, and long pull-down time of the RF MEMS switches. Dynamic equations of the micro beam were built based on the small deflection theory. Dynamic behaviors of the proposed RF MEMS switch were analyzed and calculated by the variable separation method. The effects of different driving voltages, structure parameters and materials on the RF MEMS switch performance were discussed in detail. The simulation results presented that the proposed RF MEMS switch had an actuation voltage of 26 V, a pull-down time of 31.5 [Formula: see text] and an actuation displacement of 3 [Formula: see text]. The results also showed that the pull-down time of micro beam increased as the dielectric layer thickness increased. When the beam thickness was higher than 1.1 [Formula: see text], the switch could not pull down anymore. Additionally, the switch had a lowest pull down time when Al was used as micro beam material, compared to Au, Si, and SiC. The COMSOL Multiphysics finite element analysis was carried out to validate the MATLAB simulation results, and the comparison results were basically consistent with the MATLAB simulation results. Besides, the proposed switch had an insertion loss of −0.2 dB on up-state and isolation of more than −20 dB on down-state at 60 GHz derived from the electromagnetic simulation results. The actuation voltage, pull-down time, actuation displacement, and electromagnetic performances of the proposed RF MEMS switch were compared to some other switches, which were better than some existing switches.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Ningbo City of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3