The local extinction and the nonlinear behaviors of a premixed methane/air flame under low-frequency acoustic excitation

Author:

Sun Yongchao1,Sun Mingbo1,Zhu Jiajian1,Xie Yang1,Wang Hongbo1,Wan Minggang1,Chen Yong2

Affiliation:

1. Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China

2. National University of Defense Technology, Changsha 410073, China

Abstract

The local extinction and the nonlinear behavior of a premixed methane/air flame under acoustic excitation are investigated experimentally. High-speed photography and high-speed schlieren imaging are used to investigate the oscillation characteristics of the premixed methane/air flame. The flame structure shows a periodic fluctuation when the acoustic excitation is performed to the flame. The local flame extinction can be observed during the flame evolution process. During the local flame extinction process, the flame is found to be cut into two components, then the downstream one extinguishes shortly. The Particle Image Velocimetry (PIV) results suggest that the lower velocity at the separation point is one of the reasons for the flame local extinction. The flame without the acoustic excitation oscillates with a dominant frequency of 18 Hz, which is shown by the schlieren images to be related to the evolution of the hot gas around the flame driven by the buoyant force. When the acoustic excitation frequency is 100 Hz, the structure of the hot gas is destroyed, meanwhile the amplitude of the nature frequency decreases significantly. The hot gas structure appears regularly with the increasing excitation frequency. As a result, the amplitude of the nature frequency also increases gradually. Proper Orthogonal Decomposition (POD) analysis shows that the dominant frequency of the flame without the acoustic excitation is mainly caused by the evolution of the production zone of the flame and the fluctuation of the flame tip. The evolution of the production zone is driven by the buoyant force, which indicates that the result from POD method is consistent with the conclusion obtained from the high-speed schlieren images. Two dominant modes are obtained when the excitation frequencies are 100 and 200 Hz. The two modes are mainly caused by the process of the local flame extinction and the increasing flame length.

Funder

National Science Foundation of China

Outstanding Youth Fund of the National University of Defense Technology

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3