Numerical Investigation of an Axisymmetric Model Scramjet Assisted with Cavity of Different Aft Wall Angles

Author:

Ma Guangwei1ORCID,Sun Mingbo1ORCID,Zhao Guoyan1,Liu Pei1,Tang Tao1,Fan Li1,Wang Hongbo1

Affiliation:

1. Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China

Abstract

An axisymmetric model scramjet assisted with cavity flameholder is numerically investigated. Three-dimensional Reynolds-averaged Navier-Stokes simulation is carried out to reveal the fuel mixing and combustion characteristics. The simulation results show reasonable agreements with experimental data. The analysis indicates that the axisymmetric and rectangular scramjet has some similarities to the cavity shear layer in the nonreacting flow field. The configuration of the cavity shear layer changes hugely due to the significant chemical reaction and heat release in the reacting flow field. Typically, two more configurations with different cavity aft wall angles are compared with the experimental configuration to optimize the configuration of the cavity. When the cavity aft wall angle is small, the cavity shear layer bends to the cavity floor and more fuel enters into and stays in the cavity, which results in poor fuel mixing performance. With the increase of the aft wall angle, the fuel distributes more uniformly and the fuel mixing efficiency improves. In the reacting flow field, the volume of the cavity full of hot products and free radicals increases while the interaction between the cavity and main flow decreases with the increase of the aft wall angle. The improved combustion efficiency shows that larger cavity volume weighs more than reduced interaction between the cavity and main flow. The combustion is more violent in the case with a larger aft wall angle. Therefore, a proper increase of the aft wall angle is beneficial to the performance of cavity-assisted axisymmetric scramjet when designing the cavity flameholder.

Funder

Science and Technology Foundation of State Key Laboratory

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3