Influence of Incident Shock on Fuel Mixing in Scramjet

Author:

Wang Chao1,Wang Hongbo1ORCID,Yang Yixin1ORCID,Liu Xu1

Affiliation:

1. Hypersonic Technology Laboratory, National University of Defense Technology, Changsha 410073, China

Abstract

During the operation of hypersonic vehicles, a reciprocal coupling effect is manifested between the inlet and the combustion chamber. This results in an unavoidable non-uniformity of conditions at the combustion chamber’s entrance, which, in turn, influences the fuel mixing within the chamber. The present study employed the Reynolds-averaged Navier–Stokes (RANS) equations to perform a numerical simulation of an X-51-like vehicle, with a focus on examining the impact of isolation section length and multi-injection strategies on the fuel mixing characteristics within the combustion chamber under conditions of non-uniform inflow. The findings indicated that a supersonic non-uniform inlet triggers incident shock waves, leading to a non-uniform pressure distribution across the flow section. Moreover, the position of injection was found to be pivotal in regulating penetration depth and mixing efficiency. The incident shock wave, bow shock, and boundary layer separation shock interacted with each other to increase local pressure. The coupling of high and low pressures generated an adverse pressure gradient that led to boundary layer separation, which further enhanced fuel penetration depth.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3