Node Trust: an effective method to detect non-overlapping community in social networks

Author:

Sheng Jinfang1,Li Qiong1,Wang Bin1ORCID,Guan Wanghao1,Dai Jinying1,Hu Jie1,Zuo Huaiyu1

Affiliation:

1. School of Computer Science and Engineering,Central South University, No. 932 South Lushan Road, Changsha Hunan 410083, China

Abstract

Social networks are made up of members in society and the social relationships established by the interaction between members. Community structure is an essential attribute of social networks. The question arises that how can we discover the community structure in the network to gain a deep understanding of its underlying structure and mine information from it? In this paper, we introduce a novel community detection algorithm NTCD (Community Detection based on Node Trust). This is a stable community detection algorithm that does not require any parameters settings and has nearly linear time complexity. NTCD determines the community ownership of a node by studying the relationship between the node and its neighbor communities. This relationship is called Node Trust, representing the possibility that the node is in the current community. Node Trust is also a quality function, which is used for community detection by seeking maximum. Experiments on real and synthetic networks show that our algorithm has high accuracy in most data sets and stable community division results. Additionally, through experiments on different types of synthetic networks, we can conclude that our algorithm has good robustness.

Funder

National Key Research and Development Program of China

National Science and Technology Major Project of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3