TCDABCF: A Trust-Based Community Detection Using Artificial Bee Colony by Feature Fusion

Author:

Peng Zhihao1ORCID,Rastgari Mohsen2,Navaei Yahya Dorostkar3,Daraei Raziyeh4,Oskouei Rozita Jamili4ORCID,Pirozmand Poria1,Mirkamali Seyed Saeid5ORCID

Affiliation:

1. School of Computer and Software, Dalian Neusoft University of Information, Dalian 116023, China

2. Department of Computer Engineering Germi Branch, Islamic Azad University, Germi, Iran

3. Department of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

4. Department of Computer Science and Information Technology, Mahdishahr Branch, Islamic Azad University, Mahdishahr, Iran

5. Department of IT and Computer Engineering, Payame Noor University (PNU), Tehran, Iran

Abstract

Social network aims to extend a widespread framework to communicate users and find alike people with common features, easier and faster. As people usually experience in everyday life, social communication can be formed from common groups with almost identical properties. Detecting such groups or communities is a challenging task in various fields of social network analysis. Many researchers intend to develop algorithms that work effectively and efficiently on social networks. It is believed that the most influential user in a community that had been followed by similar users could be a central point of a community or cluster, and the similar user would be members of the community. Research studies tend to increase intracommunity similarity and decrease intercommunity similarity to improve the performance of the community detection methods by finding such influential users accurately. In this paper, a hybrid metaheuristic method is proposed. In the proposed method called trust-based community detection using artificial bee colony by feature fusion (TCDABCF), we use a fusion approach combined with artificial bee colony (ABC) to improve the accuracy of the community detection task. In this approach, not only the social features of users are considered but also the relationship of trust between users in a community is also calculated. So, the proposed method can lead to finding more precise clusters of similar users with influential users in the center of each cluster. The proposed method uses the artificial bee colony (ABC) to find the influential users and the relation of their followers accurately. We compare this algorithm with nine state-of-the-art methods on the Facebook dataset. Experimental results show that the proposed method has obtained values of 0.9662 and 0.9533 for NMI and accuracy, respectively, which has improved in comparison with state-of-the-art community detection methods.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3