Four-party quantum operation sharing with composite quantum channel in Bell and Yeo–Chua product state

Author:

Zhang Zhanjun1ORCID,Xing Hang2,Ye Biaoliang3,Xie Chuanmei2

Affiliation:

1. School of Information & Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China

2. School of Physics and Materials Science, Anhui University, Hefei 230039, China

3. Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China

Abstract

A four-party single-qubit operation sharing scheme is put forward by utilizing the Bell and Yeo–Chua product state in an entanglement structure as the composite quantum channel. Four features of the scheme are discussed and confirmed, including its determinacy, symmetry, and security as well as the scheme experimental feasibility. Moreover, some concrete comparisons between our present scheme and a previous scheme [H. Xing et al., Quantum Inf. Process. 13 (2014) 1553] are made from the aspects of quantum and classical resource consumption, necessary operation complexity, and intrinsic efficiency. It is found that our present scheme is more superior than that one. In addition, the essential reason why the employed state in the entanglement structure is applicable for sharing an arbitrary single-qubit operation among four parties is revealed via deep analyses. With respect to the essential reason, the capacity of the product state in quantum operation sharing (QOS) is consequently shown by simple presenting the corresponding schemes with the state in other entanglement structures.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Natural Science Foundation of Jiangxi Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3