Research on the mechanism of drag reduction by wall vibration through Lattice Boltzmann method

Author:

Zhao Jia Zhen1,Pan Guang2ORCID,Gao Shan2

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an Shaanxi 710072, China

2. Key Laboratory for Underwater Vehicle, Northwestern Polytechnical University, Xi’an Shaanxi 710072, China

Abstract

In this paper, the hydrodynamics of streamwise and normal vibration wall are studied using the Lattice Boltzmann method. Firstly, based on the two-dimensional flow geometry model, which is made up of flat wall and water fluid, the characters of the fluid near the streamwise and normal vibration wall are simulated under the condition of mutative vibration parameters. By rigorous data treating, some notable results such as the velocity distribution, density distribution curves of the flow field, and the frictional force of the solid-liquid interface are gained. Secondly, the reason of the change of frictional resistance at the solid-liquid interface by wall vibration are studied. And the results are evidence that well drag reduction effect can be obtained by applying appropriate flow vibration parameters to the solid wall. In addition, the reduction in fluid density near the solid-liquid wall is another significant cause behind the frictional drag decrease.

Funder

Natural Science Foundation of Shaanxi Province

National Natural Science Foundation

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3