Directional transport of coupled self-propelled particles with potential and Gaussian colored noise

Author:

Wang Bing1ORCID,Wu Wenfei1

Affiliation:

1. School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China

Abstract

The transport phenomenon of coupled self-propelled particles with potential and colored noise is investigated. Large translational motion noise intensity is good for the directional transport in [Formula: see text]-direction, but large self-correlation time of translational motion noise will inhibit this transport. For proper value of the asymmetry parameter, coupled inert particles move always in the [Formula: see text]-direction with increasing angular noise intensity, but in coupled self-propelled particles appears current reversal phenomenon with increasing angular noise intensity. The average velocity has a maximum and a minimum with increasing spring constant k. For inert particles and particles with small self-propelled speed, large number of particles is good for directional movement, but the effect of coupling will become weak when the self-propelled speed is large.

Funder

Natural Science Foundation of Anhui Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3