Numerical treatment of stochastic and deterministic alcohol drinker dynamics with Euler–Maruyama method

Author:

Anwar Nabeela1ORCID,Ahmad Iftikhar2ORCID,Javaid Hijab2ORCID,Kiani Adiqa Kausar3ORCID,Shoaib Muhammad4ORCID,Raja Muhammad Asif Zahoor3ORCID

Affiliation:

1. Department of Mathematics, University of Narowal, Narowal 51600, Pakistan

2. Department of Mathematics, University of Gujrat, Gujrat 50700, Pakistan

3. Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan, R.O.C.

4. Yuan Ze University, AI Center, Taoyuan 320, Taiwan, R.O.C.

Abstract

Alcohol abuse is a substantial cause of various health and societal issues, as well as a significant factor in global disease. Once alcohol is consumed in the gastrointestinal tract, it undergoes metabolism in the liver and lungs. In this investigation, the nonlinear deterministic and stochastic differential frameworks are analyzed numerically to predict the dynamic evolution of the virus in the drinker alcohol model. The framework for apprehending drinking patterns is categorized into three distinct groups: the susceptible population, risk drinkers, and moderate drinkers. The approximate solution for each population group is determined by exhaustively creating scenarios that vary the probability ratio of infection in susceptible individuals who do not consume alcohol, the increasing rate of alcohol consumption, the rate at which individuals transition from acute to chronic drinking categories, the rate at which new non-drinking consumers are attracted, the death rate of the population, the ratio affecting the rate of sociability in heavy drinkers, and the overall population rate. The Euler–Maruyama approach for the stochastic framework and the Adams method for the deterministic framework are utilized, respectively, to determine the solutions of the alcohol drinker model. This study compares deterministic and stochastic frameworks to underscore their distinct characteristics and efficiency, achieved through comprehensive simulations and in-depth analysis of the numerical outcomes.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3