MONTE CARLO SIMULATION OF STEADY-STATE TRANSPORT IN SUBMICROMETER InP AND GaAsn+–i(n)–n+ DIODE

Author:

ARABSHAHI H.1,ROKN-ABADI M. REZAEE1,BAGHSIAHI F. BADIEIAN1,KHALVATI M. R.2

Affiliation:

1. Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran

2. Department of Physics, Shahrood University of Technology, Shahrood, Iran

Abstract

Monte Carlo simulation of electron transport in an InP diode of n+–i(n)–n+ structure is compared with GaAs diode. The anode voltage ranges from 0.5 to 1.5 V. The distributions of electron energies and electron velocities and the profiles of the electron density, electric field and potential and average electron velocity are computed. Based on these data, the near ballistic nature of the electron transport in the 0.2 μm-long diode and the importance of the back-scattering of electrons from the anode n+-layer are discussed. In addition, the effects of the lattice temperature and doping on the length of the active layer are discussed. Electronic states within the conduction band valleys at the Γ, L, and X are represented by non-parabolic ellipsoidal valleys centered on important symmetry points of the Brillouin zone. Our simulation results have also shown that the electron velocity characteristics in InP diode are more sensitive to temperature than in other III–V semiconductors such as GaAs .

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ensemble Monte Carlo Electron Transport Simulation for GaN n+–n–n+ Diode;Transactions on Electrical and Electronic Materials;2020-09-02

2. Comparison between Si/SiO2 and InP/Al2O3 based MOSFETs;Journal of Experimental and Theoretical Physics;2016-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3