Half-metallic ferromagnetism in V-doped ZnTe semiconductor at reduced dopant concentration

Author:

Sajjad M.1,Zhang H. X.12,Noor N. A.3,Alay-e-Abbas S. M.45,Abid M.6,Shaukat A.5

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. Department of Physics, University of Punjab, Quaid-e-Azam Campus, 54590 Lahore, Pakistan

4. Department of Physics, GC University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan

5. Department of Physics, University of Sargodha, Sargodha 40100, Pakistan

6. Department of Physics, Beijing Institute of Technology, Beijing 10008, China

Abstract

In this study, we examine the structural, electronic, magnetic and bonding properties of zincblende phase Zn 1-x V x Te (x = 0.0625, 0.125, 0.25) compounds to present them as suitable candidates for spintronic applications. Density functional theory calculations have been used by implementing the accurate full-potential linear-augmented-planewave plus local-orbital method. Structural properties have been computed using Wu–Cohen generalized gradient approximation, whereas the modified Becke and Johnson local (spin) density approximation (mBJLDA) function has been employed for the evaluating ground state electronic properties and ferromagnetic behavior. The half-metallic (HM) ferromagnetism in Zn 1-x V x Te is analyzed in terms of V -3d states and it is shown that mBJLDA predicts wide HM gaps which promise the possibility of achieving V -doped ZnTe with high Curie temperature. The spin exchange splittings Δx(d) and Δx(pd) have been estimated and the contribution of conduction band (CB) and valence band (VB) in exchange splitting is calculated in terms of the exchange constants N0α and N0β. Furthermore, spin-polarized charge density calculation is presented for elucidating the bonding nature, while pressure dependence of total magnetic moment for three concentrations of V -doped ZnTe is also discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3