Analysis of current–voltage and capacitance–voltage characteristics of Zr/p-Si Schottky diode with high series resistance

Author:

Aldemir Durmuş Ali1

Affiliation:

1. Physics Department, Suleyman Demirel University, Isparta Tr32260, Turkey

Abstract

Zr/p-Si Schottky diode was fabricated by DC magnetic sputtering of Zr on p-Si. Zr rectifying contact gave a zero bias barrier height of 0.73 eV and an ideality factor of 1.33 by current–voltage measurement. The experimental zero bias barrier height was higher than the value predicted by metal-induced gap states (MIGSs) and electronegativity theory. The forward bias current was limited by high series resistance. The series resistance value of 9840 [Formula: see text] was determined from Cheung functions. High value of the series resistance was ascribed to low quality ohmic contact. In addition to Cheung functions, important contact parameters such as barrier height and series resistance were calculated by using modified Norde method. Re-evaluation of modified Norde functions was realized in the direction of the method proposed by Lien et al. [IEEE Trans. Electron Devices 31 (1984) 1502]. From the method, the series resistance and ideality factor values were found to be as 41.49 [Formula: see text] and 2.08, respectively. The capacitance–voltage characteristics of the diode were measured as a function of frequency. For a wide range of applied frequency, the contact parameters calculated from [Formula: see text]–[Formula: see text] curves did not exhibit frequency dependence. The barrier height value of 0.71 eV which was in close agreement with the value of zero bias barrier height was calculated from [Formula: see text]–[Formula: see text] plot at 1 MHz. The values of acceptor concentration obtained from [Formula: see text]–[Formula: see text] curves showed consistency with actual acceptor concentration of p-Si.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3