THE EFFECTS OF DAMPING AND TEMPERATURE OF MEDIUM ON THE SOLITON EXCITED IN α-HELIX PROTEIN MOLECULES WITH THREE CHANNELS

Author:

PANG XIAO-FENG12,LIU MEI-JIE1

Affiliation:

1. Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China

2. International Center Material Physics, Chinese Academy of Sciences, Shenyang 110015, China

Abstract

We studied numerically the influences of damping and temperature of medium on the properties of the soliton transported bio-energy in the α-helix protein molecules with three channels by using the dynamic equations in the improved Davydov theory and fourth-order Runge–Kutta method. From the simulation experiments, we see that the new solitons can move along the molecular chains without dispersion at a constant speed, in which the shape and energy of the soliton can remain in the cases of motion, whether short-time at T=0 or long time at T=300 K. In these motions, the soliton can travel over about 700 amino acid residues, thus its lifetime is, at least, 120 ps at 300 K. When the two solitons undergo a collision, they can also retain themselves forms to transport towards. These results are consistent with the analytic result obtained by quantum perturbed theory in this model. However, the amplitudes of the solitons depress along with increase of temperature of the medium, and it begins to disperse at 320 K. In the meanwhile, the damping of the medium can influence the states and properties of the soliton excited in α-helix protein molecules. The investigation indicates that the amplitude and propagated velocity of the soliton decrease, when the damping of medium increases. The soliton is dispersed at the large damping coefficient Γ=4 Γ0 at 300 K. The results show that the soliton excited in the α-helix protein molecules with three channels is very robust against the damping and thermal perturbation of medium at biological temperature of 300 K. Thus we can conclude that the soliton can play important part in the bio-energy transport and the improved model is possibly a candidate for the mechanism of the energy transport in the α-helix proteins.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Reference3 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3