The features of infrared spectrum of bio-polymer and its theoretical investigation

Author:

Pang Xiao-Feng1

Affiliation:

1. Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China

Abstract

We have here an insight into the features of molecular structures of bio-polymers with α-helix structure using infrared spectrum and elucidated theoretically, its relationship with bio-functions. In this case, we analyzed first the features of molecular structure of collagen and collected further the infrared spectrum of absorption of collagen and bovine serum albumin containing α-helix conformation in 400–4000 cm-1 as well as their changes of strength of infrared absorption with varying temperatures using Fourier Transform–Infrared (FT-IR) spectrometers in the region of 15–95°C. The results show that there is a new band of 1650 cm-1 close to the amide-I band of 1666 cm-1 or 1670 cm-1 in these bio-polymers, its strength decreases exponentially with increasing temperature of the systems, which can be expressed by exp [-(0.437 + 8.987 × 10-6  T 2)], but 1666 cm-1 band increases linearly with increasing temperature. We calculated the energy spectrum of the protein molecules with α-helix conformation using the Soliton Theory of bio-energy transport, which are basically same with the experimental results measured by us. From these results and soliton theory we can conclude that the nonlinear soliton excitation, corresponding to 1650 cm-1 band and the exciton excitation, is related to 1666 cm-1 band, exists in the collagen and bovine serum albumin. In the meanwhile, these results also verified that the soliton theory of bio-energy transport along α-helix bio-polymers is appropriate to the protein molecules with α-helix conformation. Therefore, the studied results are helpful to elucidate the relationship between the molecular structure and bio-function of these bio-polymers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3