Multivariate Skew Normal Copula for Asymmetric Dependence: Estimation and Application

Author:

Wei Zheng1,Kim Seongyong2,Choi Boseung3,Kim Daeyoung4ORCID

Affiliation:

1. Department of Mathematics and Statistics, University of Maine, Orono, Maine, 04469-5752, USA

2. Department of Applied Statistics, Hoseo University, Asan-si, Chungcheongnam-do, 31499, Republic of Korea

3. Korea University Sejong Campus, Division of Economics and Statistics, Department of National Statistics, Sejong, 30019, Republic of Korea

4. Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, 01003-9305, USA

Abstract

The exchangeability and radial symmetry assumptions on the dependence structure of the multivariate data are restrictive in practical situations where the variables of interest are not likely to be associated to each other in an identical manner. In this paper, we propose a flexible class of multivariate skew normal copulas to model high-dimensional asymmetric dependence patterns. The proposed copulas have two sets of parameters capturing asymmetric dependence, one for association between the variables and the other for skewness of the variables. In order to efficiently estimate the two sets of parameters, we introduce the block coordinate ascent algorithm and discuss its convergence property. The proposed class of multivariate skew normal copulas is illustrated using a real data set.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3