Bayesian Mixture Copula Estimation and Selection with Applications

Author:

Liu Yujian12,Xie Dejun1,Yu Siyi2

Affiliation:

1. School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

2. School of Economics and Management, Shanghai University of Sport, Shanghai 200438, China

Abstract

Mixture copulas are popular and essential tools for studying complex dependencies among variables. However, selecting the correct mixture models often involves repeated testing and estimations using criteria such as AIC, which could require effort and time. In this paper, we propose a method that would enable us to select and estimate the correct mixture copulas simultaneously. This is accomplished by first overfitting the model and then conducting the Bayesian estimations. We verify the correctness of our approach by numerical simulations. Finally, the real data analysis is performed by studying the dependencies among three major financial markets.

Publisher

MDPI AG

Reference30 articles.

1. Murphy, K.P. (2012). Machine Learning: A Probabilistic Perspective, MIT Press.

2. McNeil, A.J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques and Tools-Revised Edition, Princeton University Press.

3. Fonctions de repartition an dimensions et leurs marges;Sklar;Publ. Inst. Statist. Univ. Paris,1959

4. Copulas: A personal view;Embrechts;J. Risk Insur.,2009

5. Finite mixture models;McLachlan;Annu. Rev. Stat. Its Appl.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regional storm surge hazard quantification using Gaussian process metamodeling techniques;Natural Hazards;2023-10-13

2. Nonparametric Bayesian modeling on infinite mixture Student t copulas;Communications in Statistics - Simulation and Computation;2023-10-02

3. Mixture copulas with discrete margins and their application to imbalanced data;Journal of the Korean Statistical Society;2023-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3