Hybrid Computation Model for Intelligent System Design by Synergism of Modified EFC with Neural Network

Author:

Srivastava Vivek1,Tripathi Bipin K.2,Pathak Vinay K.2

Affiliation:

1. Department of Computer Science & Engineering, Rama University Uttar Pradesh, Kanpur, India

2. Department of Computer Science & Engineering, Harcourt Butler Technological Institute, Kanpur, India

Abstract

In recent past, it has been seen in many applications that synergism of computational intelligence techniques outperforms over an individual technique. This paper proposes a new hybrid computation model which is a novel synergism of modified evolutionary fuzzy clustering with associated neural networks. It consists of two modules: fuzzy distribution and neural classifier. In first module, mean patterns are distributed into the number of clusters based on the modified evolutionary fuzzy clustering, which leads the basis for network structure selection and learning in associated neural classifier. In second module, training and subsequent generalization is performed by the associated neural networks. The number of associated networks required in the second module will be same as the number of clusters generated in the first module. Whereas, each network contains as many output neurons as the maximum number of members assigned to each cluster. The proposed hybrid model is evaluated over wide spectrum of benchmark problems and real life biometric recognition problems even in presence of real environmental constraints such as noise and occlusion. The results indicate the efficacy of proposed method over related techniques and endeavor promising outcomes for biometric applications with noise and occlusion.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gene Promoter Identification Using Machine Learning;2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2023-11-22

2. DTCWTASODCNN: DTCWT based Weighted Fusion Model for Multimodal Medical Image Quality Improvement with ASO Technique & DCNN;Journal of Scientific and Industrial Research (JSIR);2022-08

3. On the complex domain deep machine learning for face recognition;Applied Intelligence;2017-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3