A NEW RBF NEURAL NETWORK FOR PREDICTION IN INDUSTRIAL CONTROL

Author:

TELMOUDI ACHRAF JABEUR12,TLIJANI HATEM1,NABLI LOTFI2,ALI MAARUF3,M'HIRI RADHI4

Affiliation:

1. Higher Institute of Applied Sciences and Technology, Gafsa University, Campus Universitaire Sidi Ahmed Zarrouk, 2112 Gafsa, Tunisia

2. ATSI, National Engineering School of Monastir, Monastir University, Rue Ibn Eljazar, 5019 Monastir, Tunisia

3. Department of Computer Science and Engineering, University of Ha'il, Ha'il, Kingdom of Saudi Arabia

4. Department of Electrical Engineering, Ecole de Technologie Supérieure, University of Quebec, 110 Notre Dame Street West, Montreal, Quebec, Canada H3C1K3, Canada

Abstract

A novel neural architecture for prediction in industrial control: the 'Double Recurrent Radial Basis Function network' (R2RBF) is introduced for dynamic monitoring and prognosis of industrial processes. Three applications of the R2RBF network on the prediction values confirmed that the proposed architecture minimizes the prediction error. The proposed R2RBF is excited by the recurrence of the output looped neurons on the input layer which produces a dynamic memory on both the input and output layers. Given the learning complexity of neural networks with the use of the back-propagation training method, a simple architecture is proposed consisting of two simple Recurrent Radial Basis Function networks (RRBF). Each RRBF only has the input layer with looped neurons using the sigmoid activation function. The output of the first RRBF also presents an additional input for the second RRBF. An unsupervised learning algorithm is proposed to determine the parameters of the Radial Basis Function (RBF) nodes. The K-means unsupervised learning algorithm used for the hidden layer is enhanced by the initialization of these input parameters by the output parameters of the RCE algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Reference40 articles.

1. Semi-supervised learning for tree-structured ensembles of RBF networks with Co-Training

2. M. R. Berthold and J. Diamond, Advances in Neural Information Processing Systems 7, eds. G. Tesauro, D. S. Touretzky and T. K. Leen (MIT Press, Cambridge, MA, 1995) pp. 521–528.

3. Testing the Predictive Power of Variable History Web Usage

4. G. E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting and Control (Holden Day, San Francisco, 1970) pp. 532–533.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Closed-loop stability analysis of a linear matrix inequalities based reduced multiple-model control algorithm;International Journal of Dynamics and Control;2023-12-18

2. Enhancing State of Charge Estimation in Ni-MH Batteries Through a Hybrid Approach Incorporating RRBF and K-Means;2023 IEEE Third International Conference on Signal, Control and Communication (SCC);2023-12-01

3. Backstepping-Based Artificial Intelligence Algorithm for Photovoltaic-Quadratic Boost Converter System;Cybernetics and Systems;2023-08-26

4. Error scaling–based adaptive region tracking control for autonomous underwater vehicles;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2023-05-08

5. Spatial adaptive iterative learning control for high-speed train with unknown speed delays;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3