Affiliation:
1. Department of Computer Science and A.I., University of Granada Granada, Spain
2. Department of Computer Science and A.I., University of Jaén, Jaén, Spain
Abstract
Social Media (SM) has become the easiest, cheapest and fastest channel for companies to identify the events that affect their customers. The geo-location capabilities of the SM interactions enable Early Warning Systems to alert not only when the quality of service decays, but also where and how many customers are impacted. In this paper we present a system and a set of supporting metrics that exploit the geo-localized SM stream, quantify the perceived impact of events, incidents, etc. on a particular area over time. Industrial service providers can add this perceptional perspective to their standard monitoring tools to enable a prompt and appropriate reaction, the decision-making in marketing activities and to unveil customer acquisition opportunities applying the system to the competitors’ customers.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献