Recommendation Algorithm of Industry Stock Trading Model with TODIM

Author:

Lv Dongdong1,Gong Yingli2,Chen Jianting3,Xiang Yang3

Affiliation:

1. School of Cyber Science and Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China

2. School of Economics and Management, Tongji University, Shanghai 201804, P. R. China

3. College of Electronics and Information Engineering, Tongji University, Shanghai 201804, P. R. China

Abstract

In stock trading, a common phenomenon is that the trends of stocks in the same industry are very similar. In contrast, the movements of stocks in different industries are often different. Therefore, applying the same model to all stock trading is inappropriate without distinguishing the industries in which the stocks belong. However, recommending an optimal industry stock trading model is very challenging based on performance evaluation indicators. First, the indicators of the trading model are diverse. Second, the ranking of multiple indicators is often inconsistent. In the paper, we model the problem to be solved as a multi-criteria decision-making process. Therefore, we first divide stock dataset into nine industries according to their main business. Then, we apply several machine learning algorithms as candidate models to generate trading signals. Second, we conduct daily trading backtesting based on the trading signals to obtain multiple performance evaluation indicators. Third, we propose an optimal recommendation algorithm for the industry stock trading model with TODIM. The experimental results in the US stock market and China’s A-share market show that the proposed algorithm can get a better trading model out-of-sample industry stock. Moreover, we effectively evaluate the generalization ability of the algorithm based on the proposed metrics. Finally, the proposed long–short portfolios based on the algorithm have achieved returns exceeding the benchmark on most out-of-sample datasets.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3