Exploring profitable opportunities: Analysing technical indicators combinations for profitable trading

Author:

Mukund Harsha Achuta1ORCID,Kesava Rao Vaddi Venkata Sundara1ORCID

Affiliation:

1. Andhra University

Abstract

This study investigates the effectiveness of three technical indicators, namely Simple moving average (SMA), On-balance volume (OBV), and Commodity channel index (CCI), in identifying profitable trading opportunities. Drawing inspiration from the work of Naved and Srivastava (2015b), this research uses historical price data from 50 undervalued companies in comparison with the returns of NIFTY 50 companies. To assess the long-term feasibility of these indicator combinations, a performance analysis is carried out over 10 years, encompassing a sizable 8,50,209 trades. The analysis focuses on trade count, total return percentage, average profit per trade, and the Sharpe Ratio. The results highlight five indicator combinations that consistently generate more positive returns than negative returns, with fewer trades. The results highlight five indicator combinations consistently generating more positive returns than negative returns, with the best strategy achieving an average return per trade distributed between 0 to 30 percent (50 percent of trades), 30 to 70 percent (25 percent of trades), and less than 25 percent of trades incurring negative returns of up to -10 percent. CCI emerges as the most effective indicator for profitability, followed by OBV and SMA. This research equips market participants with valuable insights for well-informed investment decisions, emphasizing both potential returns and risk management.

Publisher

Virtus Interpress

Reference21 articles.

1. Ali, I., Mahfooz, S. Z., Mehmood, N. Q., & Mehmood, M. N. (2023). Deployment of a smart trading system for intelligent stock trading. The Nucleus, 60(1), 1–8. http://www.thenucleuspak.org.pk/index.php/Nucleus/article/view/1254

2. Bashir, B., & Aslam, F. (2022). Technical indicator selection and trading signal forecasting: Varying input window length and forecast horizon for the Pakistan Stock Exchange. The Journal of Network Theory in Finance, 3(5). https://doi.org/10.21314/jntf.2021.005

3. Chandar, S. K. (2022). Convolutional neural network for stock trading using technical indicators. Automated Software Engineering, 29(1), 1–14. https://doi.org/10.1007/s10515-021-00303-z

4. Chio, P. T. (2022). A comparative study of the MACD-base trading strategies: Evidence from the US stock market. arXiv. https://doi.org/10.48550/arxiv.2206.12282

5. Di Graziano, G. (2014). Optimal trading stops and algorithmic trading. SSRN Electronic Journal, 8(4). https://doi.org/10.2139/ssrn.2381830

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3